
Distributed Systems 
Safety Research

Andi Skrgat



1. A short introduction to Clojure
2. Jepsen

a. Theoretically
b. Interaction with Memgraph
c. Networking

3. Failures
4. Demo

Content of this deck



Clojure



- Functional paradigm ⇒ functions as values
- Referential transparency
- Usually pure functions
- Functions as 1st class citizens 

- Return
- Compose 
- Pass 
- …

Clojure as functional language 



- Based on JVM stack ⇒ very easy, bidirectional integration with Java
- Compiles to bytecode on the JVM
- Compiles to Common Intermediate Language (CIL) on the CLR (used 

for .NET)
- Dynamically typed language
- Based on Lisp => Metaprogramming

Linguistic perspective on Clojure



- Immutable data structures
- Concurrency (Software transactional memory support)
- Pass by value ⇒ efficiency? 

Algorithmic perspective



What Is Jepsen?



- A testing tool for distributed systems
- Injecting faults
- A collection of libraries
- Written in Clojure
- Working on binaries, not on source code ⇒ bugs in production
- Cannot prove correctness, only failures











Summary

- Client per worker
- Num of workers = num of instances
- Generator generates sequences of operations
- Client has a handler for each operation
- Cypher query is sent to Memgraph DB using Bolt connection
- Result is written to history
- History analyzed at the end













Summary

- Initialization is done through two operations = :setup_cluster and 
:initialize_data

- First leader is chosen randomly
- First main is chosen randomly











Summary

- :read-balances ⇒ read balances of all accounts, write results to history
- :show-instances ⇒ run `SHOW INSTANCES`, write results to history
- :transfer-money ⇒ update accounts, write results to history



Introduce failures











Demo

https://github.com/memgraph/memgraph/blob/master/tests/jepsen/src/jepsen/memgraph/habank.clj


Thank you for 
your time!

www.memgraph.com



References
(1) https://www.cs.cmu.edu/~rwh/students/okasaki.pdf
(2) https://www.manning.com/books/clojure-in-action
(3) https://jepsen.io/
(4) https://stackoverflow.com/questions/5669933/is-clojure-compiled-or

-interpreted

https://www.cs.cmu.edu/~rwh/students/okasaki.pdf
https://www.manning.com/books/clojure-in-action
https://jepsen.io/
https://stackoverflow.com/questions/5669933/is-clojure-compiled-or-interpreted
https://stackoverflow.com/questions/5669933/is-clojure-compiled-or-interpreted

