
Modules, 
std::stacktrace, 

std::expected
Andi Skrgat



1. Modules
2. std::stacktrace
3. std::expected 
4. Practical

Content of this deck



Modules



- A language feature to share declarations and definitions 
across translation unit

- Since C20 but good support is fairly recent CMake 
removed experimental support this year)

- Completely orthogonal to namespaces

Intro to modules







Module name



Global module fragment



- Used to include headers when importing modules isnʼt 
supported

- It must come at the beginning of the file

Global module fragment









- For clang preferred extension is .cppm 
- Modules are replacement for header files
- Global module fragment for includes
- Export means I am dealing with module interface units

Key points









- A collection of module units with the same module name
- If there is an export ⇒ module interface units
- Everything else ⇒ module implementation units
- There can be more than one impl. units but only a single 

interface unit

Named modules



Module impl unit 1



Module impl unit 1

Module impl unit 2





Private module fragment

- Both declaration and implementation in the .cppm
- Implementation changes donʼt require whole module recompilation and its dependencies
- You can have less files with the same functionality





Before modules



Standard translation unit

- Highly parallel build
- A lot of code gets propagated even if not used through transitive inclusion to the 

translation unit
- Relationship between a header file and translation unit is more a convention (cpp file can 

be used independently)



Modules

- Need an interface in order to import them
- When a module is compiled we get two files:

- An object file for linking
- Binary Module Interface BMI



Binary Module Inteface

- From OpenStd: The artifact created by a compiler to represent a module unit. The format 
is implementation specific. 

- All entities that are exported by a module in a format suitable for fast imports and 
lookups

- Reduced code bloating and better physical isolation but strong dependencies between 
modules ⇒ hard to parallelize, we are searching for DAG between modules

- clang-scan-deps tool used to find deps between modules

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1838r0.pdf




Modules != pre-compiled headers

- Pre-compiled headers still need to comply with the header inclusion model (linear 
dependency chain)

- Best to use PCH when having a big-sized header included at multiple places



Modularizing mg-coordination

- Experiment: Modularize mg-coordination and measure build times
- Build time of memgraph
- Build time when mg-coordination.a is missing
- Size of mg-coordination.a

- https://github.com/memgraph/memgraph/pull/3491

https://github.com/memgraph/memgraph/pull/3491


Modules are space and time efficient

- Module contents arenʼt transitively propagated if not requested explicitly
- For this you have export import
- Instead of including each header file into a cpp file and then compiling it, you are 

compiling it just once ⇒ smaller translation units
- You use BMI to only import some of the symbols from the module, not whole module 

code



Results

Build memgraph Build libmg-coordination.a Lib size

No modules 3:20.05 19.878 37MB

Modules 4:39.11 1:04.38 38MB



Modules lead to better abstractions

- Very fine-grained control over whatʼs visible and whatʼs not ⇒you can be very precise in 
specifying what are your needs

- Comparison with microservices
- Boost example with property_value.hpp







Caveats

- Not every hpp+cpp pair can be translated into a cppm with a private module fragment 
(example is the issue with nlohmann/json.hpp)

- Forward declarations donʼt work across modulem, either use module partitions or 
refactor

- Hard to mix .hpp and .cppm files ⇒ couldnʼt modularize “coordinator_rpc.hppˮ 
independently from “rpc/utils.hppˮ

- Build order matters, changes in the mg-coordination caused a failure to compile a 
property_value.hpp

- import std ⇒ not working in our case



- https://cmake.org/cmake/help/latest/command/target_sources.html#file-sets

- https://www.youtube.com/watch?v=7WK42YSfE9s&t=1s

- https://cryos.net/2024/01/c-modules-and-cmake/

- https://www.youtube.com/watch?v=_x9K9_q2ZXE&t=3209s

- https://www.youtube.com/watch?v=l_83lyxWGtE&t=3040s

Resources

https://cmake.org/cmake/help/latest/command/target_sources.html#file-sets
https://www.youtube.com/watch?v=7WK42YSfE9s&t=1s
https://cryos.net/2024/01/c-modules-and-cmake/
https://www.youtube.com/watch?v=_x9K9_q2ZXE&t=3209s
https://www.youtube.com/watch?v=l_83lyxWGtE&t=3040s


std::stacktrace



https://godbolt.org/z/jdPb75GMs

https://godbolt.org/z/jdPb75GMs


std::expected





Practical



Task recommendations

- Figure out why modularizing mg-coordination slowed down the build ⇒ RESEARCH
- Modularize some other library (partially) and measure the effect ⇒ IMPL
- Make use of std::stacktrace in our exceptions
- Replace utils::BasicResult with std::expected
- Remove range-v3 dependency from Conan
- Std::move_only_function
-



Thank you for 
your time!

www.memgraph.com


